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Abstract—This paper introduces DSrepair, a knowledge-
enhanced program repair method designed to repair the buggy
code generated by LLMs in the data science domain. DSrepair
uses knowledge graph based RAG for API knowledge retrieval as
well as bug knowledge enrichment to construct repair prompts
for LLMs. Specifically, to enable knowledge graph based API
retrieval, we construct DS-KG (Data Science Knowledge Graph)
for widely used data science libraries. For bug knowledge
enrichment, we employ an abstract syntax tree (AST) to localize
errors at the AST node level. DSrepair’s effectiveness is evaluated
against five state-of-the-art LLM-based repair baselines using
four advanced LLMs on the DS-1000 dataset. The results show
that DSrepair surpasses all five baselines. Specifically, when
compared to the second-best baseline, DSrepair demonstrates
significant improvements, fixing 44.4%, 14.2%, 20.6%, and
32.1% more buggy code snippets for each of the four evaluated
LLMs, respectively. Additionally, it achieves greater efficiency,
reducing the number of tokens required per code task by 17.49%,
34.24%, 24.71%, and 17.59%, respectively.

Index Terms—Code Repair, Large Language Model, Knowl-
edge Graph, Data Science

I. INTRODUCTION

Data science is crucial in driving innovation and decision-
making across various domains [1], [2], leveraging data to
uncover insights and inform strategic actions. Nevertheless,
the complexity and expertise required to handle the relevant
libraries for coding data science solutions can pose significant
barriers to lay users. Large Language Models (LLMs) have
emerged as powerful tools to generate data science code
automatically [3]–[5], democratizing access and accelerating
development processes. Despite their potential, the widely
acknowledged shortcomings with LLMs, such as hallucination
as well as the lack of specialized knowledge of certain domains
(e.g. long-tail knowledge of API usage) [6], [7] and specific
code context [8], remain significant obstacles. These issues
are particularly critical in the data science domain, where
the code heavily relies on libraries for accurate and efficient
data processing and analysis, making precision and contextual
accuracy essential for robust outcomes. Existing studies have
applied feedback-based iterative self repair [9]–[13] to improve
the reliability of LLM-generated code. Nevertheless, these
methods are not designed for data science code.

Recently, Retrieval-Augmented Generation (RAG) [14] has
also emerged as a widely-adopted technique to inject external
knowledge into LLMs to assist coherent code generation.
RAG is a powerful framework that combines the strengths of
information retrieval and LLMs to enhance code generation.
Existing code generation work on RAG [15]–[18] all use a
common RAG architecture, where the “retriever” component

gets relevant plain text from a vast corpus or database using
a vector similarity search. This retrieved information is then
fed into an LLM, which uses this context to produce more
accurate and relevant code [19]–[22]. These text-Based RAG
methods do not work well for code generation tasks, as they
rely on unstructured or semi-structured plain text that lacks the
semantic relationships and structured representation needed for
complex code understanding and generation. Specifically, 1)
text-based retrieval relies on vector similarity search, which
often retrieves irrelevant or loosely related information due
to ambiguities in natural language; 2) plain text does not
explicitly represent the relationships between APIs, their de-
pendencies, or their attributes (e.g., parameters, return types).
As a result, text-based RAG methods may fail to provide the
comprehensive contextual knowledge required for resolving
an issue; 3) retrieved plain text often includes redundant
descriptions or ambiguities, which can confuse large language
models (LLMs) or lead to suboptimal code generation.

This paper introduces DSrepair, a knowledge-enhanced
prompt engineering strategy for repairing incorrect data sci-
ence code produced by LLMs via knowledge graph-based
RAG as well as bug information enrichment. We build DS-KG
(Data Science Knowledge Graph), a set of knowledge graphs
for seven most widely adopted data science libraries (i.e.,
NumPy, Pandas, SciPy, Scikit-learn, Matplotlib, PyTorch, and
TensorFlow) [3]–[5], [23], [24]. For the buggy code generated
by an LLM, DSrepair uses the API name appeared in the code
as the query, to obtain the correct usage of corresponding API
functions by accessing DS-KG. It then uses the returned result
to guide the LLM in repairing code.

Compared with text-based RAG, our KG-based RAG can
naturally capture more complex relationships and depen-
dencies within API documents, which is essential in the
data science domain. The incorporated rich semantic rela-
tionships stored in knowledge graphs result in more re-
liable and efficient code generation and repair. For in-
stance, in Matplotlib’s API document, an API named mat-
plotlib.pyplot.subplots, has a parameter called gridspec kw.
The value of gridspec kw must be passed to another API
object, called matplotlib.gridspec.GridSpec. If an error occurs
in gridspec kw, it is more helpful to query the knowledge
from matplotlib.gridspec.GridSpec rather than just from mat-
plotlib.pyplot.subplots. A well-designed KG can infer such
dependency naturally.

DSrepair also uses enhanced bug information to improve
the program repair effectiveness. Data science code tends to
contain multiple function calls and data operations in one
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line. Therefore, to obtain more fine-grained bug information,
DSrepair uses Abstract Syntax Tree (AST) and test case
execution information to localize errors at the AST node level.

We evaluate DSrepair on two widely used general purpose
LLM (i.e., GPT-3.5-turbo and GPT-4o-mini [25]) and two
state-of-the-art coding LLMs (i.e., DeepSeek-Coder [26] and
Codestral [27]) based on DS-1000 [5], the data science code
generation benchmark spanning seven data science libraries.
Our results show that DSrepair outperforms all the five base-
line LLM-based repairing techniques. In particular, compared
to the second-best baseline, DSrepair fixes 44.4%, 14.2%,
20.6%, and 32.1% more buggy code snippets for the four
LLMs, respectively, but saves 17.49%, 34.24%, 24.71%, and
17.59% tokens per code task, respectively.

To summarize, this paper makes the following contributions:

• We present DSrepair, a novel LLM-based program repair
method for repairing data science code leveraging knowl-
edge graph-based RAG and enriched bug information.

• We construct and release DS-KG (Data Science Knowledge
Graph), a comprehensive set of knowledge graphs tailored
to the seven most widely used data science libraries.

• We provide an AST-based bug information enriching method
that can pinpoint errors at the AST node level.

• We conduct an empirical study with four LLMs and five
baselines, demonstrating that DSrepair significantly outper-
forms all baselines in repairing data science code.

We release our data, code, KG data dump, and results at our
homepage [28]. The rest of the paper is organized as follows.
Section II outlines our methodology. Section III describes
the design of the experiments, including research questions,
benchmarks, baselines, selected models, and measurements.
Section IV presents the results and highlights notable findings
based on our empirical results. Section V discusses the threat
to validity and the limitation of our work. Section VI intro-
duces the related work of our study. Section VII concludes.

II. METHOD

Fig 1 shows an overview of DSrepair. Given a code problem
description, we first let LLM (i.e. GPT-3.5-turbo) generate
code. If the code cannot pass the test cases, DSrepair con-
structs a repair prompt to let LLM regenerate the code (more
details in Section III-B). As shown in the figure, DSrepair
involves four main steps: API KG Construction, where a
knowledge graph (DS-KG) is built for popular data science
libraries (e.g., NumPy and Pandas) to capture detailed API
usage and relationships; API Knowledge Retrieval, where API
calls are extracted from the buggy code and queried from DS-
KG, with the results verbalized into natural language for LLM
prompts; Bug Knowledge Enrichment, which localizes errors
at the AST node level using test case execution to provide fine-
grained bug information; and Prompt Construction, where all
gathered information is structured into a detailed prompt to
guide the LLM in generating effective repairs.
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Fig. 1: Overview of DSrepair.

A. API KG Construction

We develop DS-KG, a knowledge graph tailored to widely
adopted data science libraries such as NumPy, Pandas, SciPy,
Scikit-learn, Matplotlib, PyTorch, and TensorFlow. Its primary
purpose is to assist LLMs in repairing buggy code by provid-
ing structured information about the correct usage of APIs.
Following standard KG construction procedures, we begin by
creating an ontology to define the schema for DS-KG [29],
[30]. Existing ontologies are unsuitable for representing API
documentation in the context of data science code repair.
To address this gap, we manually design a domain-specific
ontology schema, drawing insights from the structure of API
documentation. API documentation typically provides details
such as an API’s name, expression, explanation, parameters,
and return types. Our ontology captures these attributes for
individual API functions, enabling precise and structured
queries based on error information extracted from buggy
code. Inspired by prior work in code ontology design [31],
[32], we represent each API function as a unique entity
within DS-KG. The ontology includes two types of relations:
(1) Attribute Relations, describe links between API entities
and their attributes, such as: ‘has name’, ‘has expression’,
and ‘has explanation’1. (2) Dependency Relations, capture
the hierarchical structure and dependencies of APIs, such as
‘belongsToLibrary’ and ‘belongsToModule’.

Fig 2 illustrates an example of DS-KG construction from
the NumPy API document. Each API object introduced on
a webpage, such as numpy.flipud and numpy.array split, is
treated as an entity. Detailed information about an API object,
such as its name, expression, explanation, and parameters &
returns, is used to build RDF triples with attribute relations.
For example, the API object numpy.flipud has such an RDF
triple, <numpy.flipud, has expression, “numpy.flipud(m)”>.
New entities are created for the parameters and return val-
ues of each API object, each with attributes like argument
position, data type, and explanation. For example, the param-
eter m in “numpy.flipud(m)” has the following RDF triple:
<numpy.flipud parameter m, hasType, “array like”>. Using
the prefix of the API entity (derived from the name and
webpage URL), we construct RDF triples with dependency
relations. For instance, the API object numpy.flipud is linked

1In this paper, we ignore the OWL prefixes in RDF triples (<subject,
predicate, object>).
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to its library through the RDF triple: <numpy.flipud, be-
longsToLibrary, numpy>.

B. API Knowledge Retrieval

DSrepair integrates DS-KG to enhance the repair of buggy
code by retrieving relevant API knowledge and incorporating
it into the repair process. DSrepair extracts all API invocations
in the buggy code snippet using regular expressions (e.g.,
identifying ‘np.flipud’ or ‘np.array split’). It resolves API
prefixes (e.g., mapping ‘np’ to ‘numpy’) and uses the full API
name for queries, accounting for the common use of abbrevi-
ations in data science libraries. Using the resolved API name,
DSrepair constructs SPARQL queries [33] to retrieve RDF
triples from DS-KG. These triples encapsulate knowledge
specific to the queried API, such as its attributes, dependencies,
and parameter details. To ensure compatibility with LLMs,
we transform the retrieved RDF triples into natural language
sentences using triple verbalization techniques [34]. These
sentences provide human-readable explanations, including a
description of the API’s purpose and syntax, details about
parameters and returns together with their data types and
explanations. The retrieved API knowledge is concatenated
and included in the “API Knowledge” section of the repair
prompt provided to the LLM.

In Section IV-F, we demonstrate that incorporating only
the full API expression as knowledge yields the best per-
formance for data science code repair. Thus, by default,
DSrepair includes the full API expression in the prompt. This
approach balances the richness of information and efficiency,
ensuring LLMs receive sufficient contextual guidance without
overwhelming them with unnecessary details.

C. Bug Knowledge Enrichment

Bug knowledge enrichment aims to provide LLMs with
extra bug information to help LLMs better repair the bug
without requesting extra tests. We use only the example tests
provided in the coding task description. Traditional fault local-
ization methods such as spectrum-based fault localization [35]
and mutation-based fault localization [36] are not applicable
here for two reasons. First, data science code generation
benchmarks usually provide a very limited number of tests
(e.g., 1.6 tests on average per problem in DS-1000) since
the annotators need to define program inputs with complex
objects such as square matrices, classifiers, or dataframes [5];
second, traditional methods are often file-level or line-level
fault localization, while data science code tends to contain
multiple function calls and data operations in one line. There-
fore, different from traditional methods, DSrepair uses AST-
node level bug information to provide LLMs with more fine-
grained bug information. Fig. 3 shows a specific example of
our bug information enrichment procedure.

Firstly, test cases are extracted from the coding task de-
scription provided. These tests are essential for validating the
correctness of the code and are used later in the bug knowledge
enrichment process. We then transform the incorrect code

snippet into its AST representation. Once the AST is gen-
erated, DSrepair iterates within a namespace that includes all
necessary libraries and the extracted test cases. This iteration
involves executing nodes in the AST sequentially.

To gain detailed bug information, the system identifies the
last unexecuted node in the AST. We classify all the bugs into
two categories: 1) Runtime Errors. If the code contains bugs
that prevent it from being executed, the system will run each
AST node until it encounters an error. The AST node that
was executable before the failure occurred is noted as the last
executed node. The node immediately following this, which
causes the failure, is where the bug is likely located. The error
is between these two nodes: the last executable node and the
first unexecutable node. 2) Assertion Errors. If the entire code
can be executed but the results do not match the expected
output, such an issue can be due to an assertion error. In this
case, the system captures the final value returned by the code
execution. By comparing this actual output with the desired
result, the system can provide information to LLMs about why
the code is incorrect. The comparison highlights discrepancies,
offering insights into potential logical errors in the code.

D. Prompt Construction

This step uses information obtained from the previous steps
and organizes it into a structured prompt [37], which is then
fed to the LLM for code repair. As shown in Fig 4, the final
prompt includes the following components: problem descrip-
tion, incorrect code, stderr information, API knowledge, bug
knowledge, fact-checking, and response format.

We first put the problem description and LLM generated
incorrect code in the prompt. Error messages are cleaned by
removing local file paths and deleting warnings. To some ex-
tent, this action protects the privacy of users’ operation system
environment and ensures that only relevant error information is
included, focusing on critical errors that hinder code execution.

We extract useful API knowledge from the DS-KG query
results, specifically the API expression or signature. This ex-
pression includes all parameters both compulsory and optional
highlighting potential errors related to parameter usage and
function calls. This comprehensive parameter information is
crucial as it often points to the source of errors in the code.

For bug knowledge, we leverage the results from bug
enrichment. This involves providing the test case, the last
unexecutable AST node, and the last executable AST node
along with the executed result value. By comparing the actual
output with the desired output, we can pinpoint the exact
location and nature of the error. This detailed local context
helps in understanding the specific issues within the code.

The fact-checking component identifies where the existing
code logic violates the corresponding requirements outlined
in the problem description. This step is essential to redirect
the LLM’s attention back to the problem description, ensuring
that the solution aligns with the original requirements and
constraints. The complete prompts that we use are available
on our homepage [28].
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‘numpy.array_split(ary, indices_or_sections, axis=0)’>

<numpy_array_split, has_explanation, ‘Split an array 
into multiple sub-arrays’>

…

<numpy.flipud, has_name, “numpy.flipud”>

<numpy.flipud, belongsToLibrary, numpy>

<numpy.flipud, has_expression, “numpy.flipud(m)”>

<numpy.flipud, has_explanation, “Reverse the order of 
elements along axis 0 (up/down).”>
… RDF Triples

Data 
Extraction

DS-KG

B = np.flipud(np.array_split(A[::-1], -(-len(A) // ncol)))

Incorrect Code

API 
Extraction & 

Query 
Construction

ValueError: setting an array element with a 
sequence. The requested array has an 
inhomogeneous shape after 1 dimensions. The 
detected shape was (4,) + inhomogeneous part.

<numpy.flipud, has_expression, “numpy.flipud(m)”>
<numpy.flipud, has_explanation, “Reverse the order of 
elements along axis 0 (up/down).”>
…

<numpy.array_split, has_expression, “numpy.array_split(ary, 
indices_or_sections, axis=0)”>
<numpy.array_split, has_explanation, “Split an array into 
multiple sub-arrays.”>
…

Retrieved RDF Triples

# API Knowledge #
numpy.flipud has full expression: numpy.flipud(m)
numpy.flipud reverse the order of elements along axis 0 
(up/down).
…
numpy.array_split has full expression: numpy.array_split(ary, 
indices_or_sections, axis=0)
numpy.array_split split an array into multiple sub-arrays.
…
### Retrieved API Knowledge

Triple 
Verbalization

SELECT ?subject ?predicate ?object
WHERE {
  GRAPH <#DSKG> {
    ?subject a dskg:Function.
    ?subject dskg:has_name ?functionName.
    ?subject ?predicate ?object.
     FILTER (?functionName = "numpy.flipud" ||      
?functionName = "numpy.array_split")
  }
} SPARQL query

Fig. 2: Details on API KG construction (Step 1) and API Knowledge Retrieval (Step 2) in DSrepair. The code raises an error
because of the mismatched array shape between np.flipud’s required input and np.array split’s output. DSrepair extracts the
API call in the error line and builds a SPARQL query to search the relevant RDF triples in the DS-KG, which is constructed
from API documents and guided by the ontology. Finally, DSrepair maps the returned RDF triples to natural language, which
will be used as a part of the repair prompt.

Generated Code: 
B = np.flipud(np.array_split(A[::-1], -(-len(A) // ncol)))

Test Case:
Input: np.array([1, 2, 3, 4, 5, 6, 7]), 2
Output: np.array([7, 6], [5, 4], [3, 2])

Enriched Bug Knowledge:

{'last_exec_part': 'np.array_split(A[::-1], -(-len(A) // ncol))',
 'last_exec_part_type': <class 'ast.Call'>,
 'last_exec_part_value': [array([7, 6]),array([5, 4]),array([3, 2]), array([1])],
 'last_unexec_part': 'np.flipud(np.array_split(A[::-1], -(-len(A) // ncol)))',
 'last_unexec_part_type': <class 'ast.Call'>}

Stderr:

Traceback (most recent call last):
…
 File "test_demo.py", line 57, in <module>
   B = np.flipud(np.array_split(A[::-1], -(-len(A) // ncol)))
…
ValueError: setting an array element with a sequence. The requested 
array has an inhomogeneous shape after 1 dimensions. The detected 
shape was (4,) + inhomogeneous part.

Bug Information Enrichment:
Module:B = np.flipud(np.array_split(A[::-1], -(-len(A) // ncol)))
-Assign:B = np.flipud(np.array_split(A[::-1], -(-len(A) // ncol)))
--Call:np.flipud(np.array_split(A[::-1], -(-len(A) // ncol)))
---Call:np.array_split(A[::-1], -(-len(A) // ncol))
[array([7, 6]), array([5, 4]), array([3, 2]), array([1])]
---Attribute:np.flipud
----Variable Name: np
--Variable Name: B

Stderr can only localize error at the line level

At here the code can be executed

Fig. 3: Bug knowledge enrichment example. Stderr (standard error information) can only localize the bug at the line level,
while our bug knowledge enrichment could enrich the error information to the AST node level.

<First Request>

<First Response>

<DSrepair>

Problem 
Description Incorrect Code

API Knowledge Bug Knowledge

Fact Checking Return Format

Incorrect Code

Problem 
Description

Fig. 4: DSrepair prompt example. The prompt contains struc-
tural and rich information to guide LLMs for code generation.

III. EXPERIMENTAL DESIGN

A. Research Questions

Our evaluation answers the following questions:
RQ1: How effective is DSrepair in repairing LLM-generated
data science code? This RQ investigates the buggy code fix
rate of DSrepair compared with other state-of-the-art program
repair methods.
RQ2: How do DSrepair’s bug fixes overlap with the five
baseline methods? This RQ investigates whether DSrepair
could fix unique bugs that the baseline methods fail to address.
RQ3: What is the cost of DSrepair? This RQ investigates
token usage and money spent on DSrepair and our baselines.
RQ4: How is DSrepair’s performance affected by different
prompt designs? To understand how different prompt designs
affect DSrepair, we conduct an ablation study to analyze each
key prompt component’s contribution to DSrepair.
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RQ5: How do different knowledge retrieval approaches
affect DSrepair? This RQ aims to explore the advantage of
knowledge graph-based RAG against plain text-based RAG.
RQ6: How does the richness of API knowledge affect
DSrepair? This RQ studies whether different types of API
knowledge (e.g., whether the knowledge contains explanation
or parameters) given in DSrepair will affect its performance.
RQ7: How does the non-determinism of LLM affect our
experiment results? This RQ studies the influence of LLM’s
inherent randomness on our experiment results.

B. Data Science Benchmark

Our evaluation uses DS-1000 [5], the state-of-the-art bench-
mark specifically designed for benchmarking LLMs in data
science code generation. The DS-1000 benchmark was specif-
ically constructed to mitigate concerns about data leakage. In
particular, the dataset involves perturbations applied to code
problems, so that models cannot answer them correctly by
memorizing the solutions from pre-training [5].

Other data science code generation benchmarks [23], [38]
are not applicable because they are not based on realistic
problems and have no dedicated test cases to evaluate the
correctness of the code (they use Exact Match [39] or BLEU
score [40]). DS-1000 comprises one thousand diverse and
practical data science problems sourced from StackOverflow,
covering seven essential Python libraries: Numpy [41], Pandas
[42], Scipy [43], Sklearn [44], Matplotlib [45], PyTorch [46],
and TensorFlow [47]. The version of each library can be found
on our homepage [28].

In our experiments, we let GPT-3.5-turbo generates code
for each of the 1000 coding tasks in DS-1000, 562 of the
generated programs fail to pass the test cases, and are regarded
as repair targets of DSrepair.

C. Baseline

As far as we know, there are no existing code repair
methods that are specifically designed for data science code
generation. Therefore, in our evaluation, we compare DSrepair
against the following state-of-the-art LLM-based methods that
are capable of repairing general types of code. While these
general-purpose methods are effective in many scenarios, they
are not tailored to address the unique challenges posed by data
science-specific bugs. By addressing the distinct requirements
of data science code, we aim to demonstrate DSrepair’s
enhanced ability to handle data science-specific repair tasks
in comparison to these baseline methods.

Code-Search [48]: Code-Search guides code repair by
searching for similar code in the code base and adding the
search result as a suggestion to the prompt. Following the
practice in the paper, we use the code problem description as
the query, and Lucene [49] as searching engine to conduct
code search in the code base PyTorrent [50].

Chat-Repair [9]: Chat-Repair leverages the code execution
result to check code correctness. If the code cannot pass the
test cases, Chat-Repair incorporates the execution results in
the prompt, to provide richer information for code debugging.

Self-Debugging-S [11]: Self-Debugging-S (S represents
Simple) enriches the prompt with the simplest information,
a sentence that indicates the code’s correctness without more
detailed information. For instance, “The generated code is
incorrect. Please fix the code.”

Self-Debugging-E [11]: Self-Debugging-E (E represents
Explanation) first requests LLM to generate a line-by-line ex-
planation about intermediate execution steps of the generated
code. Then, it requests LLM again to generate code, based on
the line-by-line explanation of the incorrect code.

Self-Repair [51]: Self-Repair first leverages error infor-
mation produced by test execution to make LLM produce a
short explanation of why the code failed. Then, it uses the
explanation as part of the prompt to request LLM to improve
the incorrectly generated code.

D. LLMs

We use two widely used general-purpose LLMs (GPT-3.5-
turbo and GPT-4o-mini [25]) and two state-of-the-art coding
LLMs (DeepSeek-Coder [26] and Codestral [27])2. We access
all the LLMs by using their commercial APIs. The details of
the four LLMs are shown in Table 1. We choose Python as our
programming language for the code generation tasks because
DS-1000 is based on Python.

To control the randomness, we set the temperature of all
the LLMs to 0. For each prompt engineering strategy, we
let the LLMs generate code for each coding task ten times3.
We select the result with median overall performance as the
final result of certain prompt engineering strategies, so that we
can further reduce the randomness of LLMs [52]. We design
RQ7 in Section IV-G to study the influence of LLM’s inherent
randomness on our experiment results.

Table 1: LLMs used in DSrepair.

LLM Version Input Token Price Output Token Price

GPT-3.5-turbo GPT-3.5-turbo-0125 $0.50/1M tokens $1.50/1M tokens
GPT-4o-mini GPT-4o-mini-2024-07-18 $0.15/1M tokens $0.60/1M tokens
DeepSeek-Coder DeepSeek-Coder-V2 $0.14/1M tokens $0.28/1M tokens
Codestral Codestral-2405 $1.00/1M tokens $3.00/1M tokens

E. Measurement

We introduce the following metrics for measuring the per-
formance of DSrepair.

Effectiveness: We measure the effectiveness of different
methods by checking their capability in fixing incorrectly
generated code, including the Absolute Number of Fixes
(ANF) and Fix Rate (FR). The former is the absolute number
of coding tasks whose code is successfully fixed. The latter
is the ratio of ANF against all the buggy code snippets. For
ANF, two of the authors conduct manual verification on the
correctness of the patches to make sure that the reported fixes
are not overfitted.

2We do not use GPT-4 because it comes at a significantly higher cost.
3We repeat experiments for Deepseek-Coder-V2 three times only, because

the API is no longer available after 2024/09/05.
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Cost: We measure the cost of different methods by Token
Usage (TU) and Money Spent (MS), which are the most
widely used metrics for measuring cost for LLM-based ap-
proaches [9]. TU refers to the total token usage when using
LLM to finish one complete request on average, including
input token usage and output token usage. MS refers to the
money cost for LLM to receive and return those tokens. Below
is the formula for the MS:

MS =

N∑
n=1

(Tokeni,n × Pi + Tokeno,n × Po)

where Pi and Po refer to the input and output token price,
Tokeni,n and Tokeno,n refer to the input token usage and
output token usage at certain request n, and N refers to the
total number of LLM requests.

IV. RESULTS

This section introduces the experimental results as well as
the analysis and findings for each RQ.

A. RQ1: How is the effectiveness of DSrepair?

To answer RQ1, we report the results of Absolute Number
of Fixes (ANF) and Fix Rate (FR) for DSrepair and all the
baseline methods with each LLM. DSrepair initially generates
555 patches that successfully pass the tests from all the LLMs.
After manual checking, two of the patches generated by GPT-
4o-mini are overfitted4 and have been removed from the
repaired set. Table 2 shows the ultimate results.

We can observe that DSrepair significantly outperforms all
the baselines in terms of ANF and FR across all four LLMs
we study. Specifically, DSrepair can fix the buggy code for
104, 145, 164, and 140 coding tasks for the four LLMs,
respectively, while the second-best results are 72, 127, 136,
and 106, respectively.

For specific data science libraries, DSrepair outperforms the
baselines for most libraries. For example, for GPT-3.5-turbo,
DSrepair has the highest fix rate in Numpy, Scipy, Sklearn,
Matplotlib, and PyTorch. For Codestral, DSrepair performs the
best on Numpy, Pandas, Sklearn, Matplotlib, and PyTorch.

Fig 5 shows an example from Codestral where the er-
ror can be solved by DSrepair, but cannot be solved
by Self-Repair. The purpose of this code problem is to
only turn on minor ticks on the x-axis. Self-Repair gen-
erates an incorrect fix, while DSrepair generates the cor-
rect fix. In this problem, the buggy code uses the function
plt.minorticks on (short for matplotlib.pyplot.minorticks on),
with parameter axis=‘x’. However, as stated in the Matplotlib
official document, the full expression of plt.minorticks on is
matplotlib.pyplot.minorticks on() with no parameters, which
means that plt.minorticks on can control the display of minor
ticks on both x-axis and y-axis, but there is no optional param-
eter to control the display on x-axis or y-axis only. With DSre-
pair, by enriching the prompt with knowledge of how to use
plt.minorticks on correctly, LLM is more likely to realize that
putting parameters in function plt.minorticks on is incorrect.

4An overfitted patch passes the test cases but is actually incorrect.

Problem No. 514 (Library category: Matplotlib):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
x = np.random.rand(10)
y = np.random.rand(10)
plt.scatter(x, y)
# how to turn on minor ticks on x axis only
# SOLUTION START

-------Incorrect Solution-----------
plt.minorticks_on( axis='x')

plt.savefig('output.png', bbox_inches 

='tight')

-------Correct Solution-------------
import matplotlib.ticker as ticker
# Turn on minor ticks on x-axis
plt.gca().xaxis.set_minor_locator(ticker.Auto
MinorLocator())
plt.savefig('output.png', bbox_inches 
='tight')

Fig. 5: A code problem example from DS-1000. The incorrect
solution is generated from Self-Repair, and the correct solution
is generated from DSrepair. By providing API knowledge of
API invoked, DSrepair can guide LLMs to generate the correct
solution with correct API usage.

The correct solution uses plt.gca().xaxis.set minor locator()
instead to reach the goal of the code problem.

Looking deeper into the buggy code that DSrepair cannot
fix, we identify two primary reasons. Firstly, the presence
of multiple errors in the code poses a significant challenge.
DSrepair is designed to address specific errors highlighted
by standard error messages. However, when a code segment
contains hidden bugs that come out only after fixing one bug,
our method struggles to resolve all issues in a single request.
Secondly, the insufficiency of information provided from the
test cases in the description limits the repair effectiveness.
Some descriptions lack accompanying test cases, which are
crucial for identifying and fixing errors. For instance, if the
buggy code triggers an assertion error, the absence of concrete
test cases impedes the LLM’s ability to generate a precise fix.
Even when generated code passes the given test cases, it may
still fail during actual evaluation. Simply informing the LLM
that the code is incorrect without detailed guidance is often
inadequate for effective repair.

Answer to RQ1: DSrepair significantly outperforms
all the baselines in fixing buggy data science code.
Specifically, DSrepair demonstrates notable improve-
ments across four LLMs by fixing 104, 145, 164, and
140 buggy programs respectively, with improvement
rates of 44.4%, 14.2%, 20.6%, and 32.1% compared
to the second-best baseline, respectively.
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Table 2: RQ1: Effectiveness of DSrepair against other baselines. Values are shown in the format ANF (FR). ANF refers to the
Absolute Number of Fixes. FR refers to Fix Rate. DSrepair outperforms the baselines for most of the libraries.

Model Prompt Engineering Strategy Numpy Pandas Scipy Sklearn Matplotlib PyTorch TensorFlow Total

GPT-3.5-turbo

Code-Search 5 (4.63%) 4 (2.12%) 2 (3.33%) 11 (14.86%) 0 (0.00%) 2 (4.55%) 2 (7.41%) 26 (4.63%)
Chat-Repair 21 (19.44%) 7 (3.70%) 5 (8.33%) 18 (24.32%) 4 (6.67%) 6 (13.64%) 2 (7.41%) 63 (11.21%)
Self-Debugging-S 14 (12.96%) 5 (2.65%) 6 (10.00%) 13 (17.57%) 4 (6.67%) 7 (15.91%) 2 (7.41%) 51 (9.07%)
Self-Debugging-E 20 (18.52%) 19 (10.05%) 2 (3.33%) 14 (18.92%) 6 (10.00%) 3 (6.82%) 4 (14.81%) 68 (12.10%)
Self-Repair 17 (15.74%) 17 (8.99%) 5 (8.33%) 12 (16.22%) 8 (13.33%) 9 (20.45%) 4 (14.81%) 72 (12.81%)

DSrepair 24 (22.22%) 17 (8.99%) 15 (25.00%) 20 (27.03%) 10 (16.67%) 15 (34.09%) 3 (11.11%) 104 (18.51%)

GPT-4o-mini

Code-Search 28 (25.93%) 21 (11.11%) 11 (18.33%) 11 (14.86%) 15 (25.00%) 14 (31.82%) 3 (11.11%) 103 (18.33%)
Chat-Repair 29 (26.85%) 28 (14.81%) 14 (23.33%) 19 (25.68%) 14 (23.33%) 13 (29.55%) 5 (18.52%) 122 (21.71%)
Self-Debugging-S 32 (29.63%) 25 (13.23%) 16 (26.67%) 20 (27.03%) 7 (11.67%) 14 (31.82%) 4 (14.81%) 118 (21.00%)
Self-Debugging-E 35 (32.41%) 33 (17.46%) 12 (20.00%) 16 (21.62%) 10 (16.67%) 17 (38.64%) 4 (14.81%) 127 (22.60%)
Self-Repair 34 (31.48%) 32 (16.93%) 13 (21.67%) 15 (20.27%) 11 (18.33%) 15 (34.09%) 5 (18.52%) 125 (22.24%)

DSrepair 33 (30.56%) 20 (10.58%) 15 (25.00%) 31 (41.89%) 22 (36.67%) 19 (43.18%) 5 (18.52%) 145 (25.80%)

DeepSeek-Coder

Code-Search 23 (21.30%) 11 (5.82%) 2 (3.33%) 12 (16.22%) 17 (28.33%) 8 (18.18%) 4 (14.81%) 77 (13.70%)
Chat-Repair 39 (36.11%) 22 (11.64%) 8 (13.33%) 18 (24.32%) 20 (33.33%) 14 (31.82%) 7 (25.93%) 128 (22.78%)
Self-Debugging-S 33 (30.56%) 26 (13.76%) 9 (15.00%) 11 (14.86%) 13 (21.67%) 10 (22.73%) 7 (25.93%) 109 (19.40%)
Self-Debugging-E 28 (25.93%) 23 (12.17%) 3 (5.00%) 18 (24.32%) 12 (20.00%) 10 (22.73%) 6 (22.22%) 100 (17.79%)
Self-Repair 40 (37.04%) 22 (11.64%) 12 (20.00%) 24 (32.43%) 17 (28.33%) 11 (25.00%) 10 (37.04%) 136 (24.20%)

DSrepair 38 (35.19%) 28 (14.81%) 10 (16.67%) 31 (41.89%) 23 (38.33%) 24 (54.55%) 10 (37.04%) 164 (29.18%)

Codestral

Code-Search 27 (25.00%) 13 (6.88%) 9 (15.00%) 24 (32.43%) 19 (31.67%) 8 (18.18%) 6 (22.22%) 106 (18.86%)
Chat-Repair 28 (25.93%) 13 (6.88%) 12 (20.00%) 21 (28.38%) 16 (26.67%) 10 (22.73%) 5 (18.52%) 105 (18.68%)
Self-Debugging-S 27 (25.00%) 19 (10.05%) 7 (11.67%) 13 (17.57%) 8 (13.33%) 9 (20.45%) 2 (7.41%) 85 (15.12%)
Self-Debugging-E 26 (24.07%) 21 (11.11%) 8 (13.33%) 16 (21.62%) 10 (16.67%) 11 (25.00%) 4 (14.81%) 96 (17.08%)
Self-Repair 32 (29.63%) 17 (8.99%) 6 (10.00%) 14 (18.92%) 10 (16.67%) 12 (27.27%) 5 (18.52%) 96 (17.08%)

DSrepair 32 (29.63%) 30 (15.87%) 9 (15.00%) 28 (37.84%) 21 (35.00%) 17 (38.64%) 3 (11.11%) 140 (24.91%)

Please note that our comparison with baselines for detecting
general software logic bugs is not meant to imply that DSrepair
outperforms these baselines in all domains. Rather, we show
that methods that are not specifically designed for data science
struggle with addressing data science bugs. By addressing the
unique needs of data science code, DSrepair can significantly
improve repair outcomes in the context of data science.

B. RQ2: How do DSrepair’s bug fixes overlap with the base-
line methods?

In this RQ, we conduct an overlap analysis by comparing the
solved buggy code snippets between DSrepair and the baseline
methods. Fig 6 shows the upset plots [53] for different prompt
engineering techniques and the intersection of their ANF.

We can observe that the fixed buggy code overlaps between
DSrepair and other prompt engineering strategies are overall
less than 55% of the bug fixes from DSrepair. This means
that about half of the code fixes from DSrepair could not be
fixed by other methods. For example, in Fig 6(a), DSrepair
can fix 104 buggy code snippets, while Self-Repair can only
fix 72 buggy code snippets. The overlap between their fixed
code snippets is only 34, which means that DSrepair has 70
(104-34=70) code snippets that Self-Repair cannot fix, and
Self-Repair has 38 (72-34=38) code snippets that DSrepair
cannot fix. The overlap among the six prompt engineering
strategies is quite low (5 for GPT-3.5-turbo, 36 for GPT-4o-
mini, 21 for DeepSeek-Coder, and 14 for Codestral). Overall,
each prompt engineering strategy shows the uniqueness of
buggy code repair.

Answer to RQ2: DSrepair uniquely fixes approxi-
mately 55% of buggy code snippets that other methods
are unable to fix.

C. RQ3: What is the cost of DSrepair?

To answer RQ3, we assess the financial costs associated
with using DSrepair by quantifying the US dollar spent on
interactions with using the APIs of the four LLMs. The cost of
each request to these models depends directly on the number of
tokens processed, including both the tokens used for input and
those generated as output. We calculate the expenses incurred
during these interactions by measuring the Token Usage (TU)
of DSrepair and then converting this usage into actual Money
Spent (MS), comparing these against the cost of our baselines.

Table 3 shows the TU and MS for different methods. Fig 7
shows a scatter plot of TU and FR. We observe that DSrepair
costs less token usage than the second-best baseline. For
example, DSrepair uses only 1262.14, 1584.74, 1453.96, and
1407.15 tokens per code problem, while Self-Repair needs
1529.63, 1944.56, 1931.20, and 1657.99 tokens per code
problem. Based on the real-time price in Table 1, the money
spent on each request is $0.00073, $0.00043, $0.00025, and
$0.00185 for using GPT-3.5-turbo, GPT-4o-mini, DeepSeek-
Coder, and Codestral as LLM respectively.

We can also observe that the token usage of DSrepair when
using GPT-4o-mini, DeepSeek-Coder, and Codestral is higher
than when using GPT-3.5-turbo. This is because the return
of these code LLMs usually does not follow the prompt’s
output format instruction. The responses typically contain
more information, such as line-by-line code comments, the
natural language explanation of the code, and the explanation
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Fig. 6: RQ2: Upset plots for prompt engineering techniques and their fixed code snippet number. For example, in (a), the left
first column means the total number of buggy code snippets that can be fixed by both DSrepair and Code-Search is 19; the
right first column means there are 14 buggy code snippets lie in the overlap among all six prompt engineering strategies.

of why the first generated code is incorrect, leading to extra
costs.
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Fig. 7: RQ3: Scatter plot of TU (Token Usage) and FR (Fix
Rate). DSrepair is the optimal prompt engineering technique
(the star markers) compared with baselines.

Answer to RQ3: Compared to the second-best base-
line, DSrepair uses fewer tokens (1262.14, 1584.74,
1453.96, and 1407.15), saving 17.49%, 34.24%,
24.71%, and 17.59% tokens per code task respectively
across different LLMs.

D. RQ4: How is DSrepair’s performance affected by different
prompt designs?

To figure out how different prompt components influence
DSrepair, we conduct an ablation study. In DSrepair, there are
two key components, i.e., API knowledge and bug knowledge.
In the ablation study, we compare DSrepair’s performance
with the performance of ‘No knowledge’ (prompt without
API knowledge and bug knowledge), ‘API Knowledge only’

(prompt without bug knowledge provided by tests), and ‘Bug
Knowledge only’ (prompt without API knowledge). We use
‘DSrepair w/o API&Bug’, ‘DSrepair w/o Bug’, and ‘DSrepair
w/o API’ to represent ‘No knowledge’, ‘API Knowledge only’,
and ‘Bug Knowledge only’ for short. We use the ANF and FR
to evaluate their performance. ‘DSrepair w/o Bug’ can also
indicate scenarios where the provided test cases are missing
or very limited or.

The results of the ablation study are shown in Table 4.
When using GPT-3.5-turbo as LLM, the overall performance
of DSrepair (18.51% FR) is better than DSrepair w/o Bug
(14.77% FR) and DSrepair w/o API (16.73% FR). The overall
performance for GPT-4o-mini of DSrepair (25.80% FR) is
better than DSrepair w/o Bug (23.49% FR) and DSrepair
w/o API (22.06% FR). When using DeepSeek-Coder as our
LLM, DSrepair still stands for the best, with 29.18% total FR.
However, DSrepair w/o Bug has better overall performance
than DSrepair w/o API, where using DSrepair w/o Bug has
28.83% FR while using DSrepair w/o API only has 27.94%
FR. Using Codestral as LLM, DSrepair has 24.91% FR,
which is higher than both DSrepair w/o Bug (24.51%) and
DSrepair w/o API (24.38%). Interestingly, we observe that the
FR declines in DSrepair w/o Bug (GPT-3.5-turbo), DSrepair
w/o Bug and w/o API (GPT-4o-mini) and DSrepair w/o API
(DeepSeek-Coder) compared with DSrepair w/o API&Bug.

Answer to RQ4: Both enriched API knowledge and
enriched bug knowledge in the prompt contribute to
the final effectiveness of DSrepair.

E. RQ5: How do different knowledge retrieval approaches
affect DSrepair?

To answer RQ5, we examine the impact of various knowl-
edge retrieval methods on the performance of DSrepair. Specif-
ically, we compare knowledge retrieval through KG (DSrepair)
with knowledge retrieval through plain-text searching. For
plain-text searching, we extract API knowledge using invoked
API names as keywords. The API knowledge is retrieved as
a window of text encompassing 50 tokens per keyword. This
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Table 3: RQ3: Cost of different prompt engineering strategies. TU refers to Token Usage (input token usage + output token
usage), and MS refers to Money Spent for LLM receiving the prompt and generating the response.

Baseline GPT-3.5-turbo GPT-4o-mini DeepSeek-Coder Codestral

TU MS TU MS TU MS TU MS

Code-Search 1829.66 $0.00124 1697.94 $0.00034 1804.85 $0.00030 1707.45 $0.00218
Chat-Repair 736.22 $0.00050 788.97 $0.00022 696.66 $0.00012 784.52 $0.00121
Self-Debugging-S 546.13 $0.00041 605.48 $0.00018 585.90 $0.00011 634.84 $0.00108
Self-Debugging-E 1695.55 $0.00120 2410.03 $0.00070 1738.98 $0.0003 1763.98 $0.00260
Self-Repair 1529.63 $0.00104 1944.56 $0.00053 1931.20 $0.00034 1657.99 $0.00232

DSrepair 1262.14 $0.00073 1584.74 $0.00043 1453.96 $0.00025 1407.15 $0.00185

Table 4: RQ4: Results of Ablation Study, where ‘DSrepair w/o
API&Bug’ refers to prompt without API knowledge and bug
knowledge, ‘DSrepair w/o Bug’ refers to prompt without bug
knowledge, and ‘DSrepair w/o API’ refers to prompt without
API knowledge. ANF refers to the Absolute Number of Fixes.
FR refers to Fix Rate.

Model Prompt ANF FR

GPT-3.5-turbo

DSrepair w/o API 94 16.73%
DSrepair w/o Bug 83 14.77%
DSrepair w/o API&Bug 85 15.12%

DSrepair 104 18.51%

GPT-4o-mini

DSrepair w/o API 124 22.06%
DSrepair w/o Bug 132 23.49%
DSrepair w/o API&Bug 133 23.67%

DSrepair 145 25.80%

DeepSeek-Coder

DSrepair w/o API 157 27.94%
DSrepair w/o Bug 162 28.83%
DSrepair w/o API&Bug 160 28.47%

DSrepair 164 29.18%

Codestral

DSrepair w/o API 137 24.38%
DSrepair w/o Bug 139 24.51%
DSrepair w/o API&Bug 123 21.89%

DSrepair 140 24.91%

window length was chosen to match the average size of the
retrieval results from DS-KG for each keyword, ensuring a fair
comparison. All other experimental settings are kept consistent
with those used in DSrepair.

Table 5 shows the results of different knowledge retrieval
approaches for DSrepair. We can see that retrieving knowledge
from plain text only has 14.77%, 22.60%, 25.44%, and 22.78%
Fix Rate for four tested LLMs. Retrieving knowledge from
plain text uses 1432.42, 1827.59, 1723.77, and 1636.46 tokens
per buggy code, which is higher than retrieval from DS-KG,
and thus has higher Money Spent on four LLMs.

Answer to RQ5: Knowledge graph-based retrieval
outperforms plain text-based retrieval in fixing buggy
data science code. The former’s fix rate is 18.51%,
25.80%, 29.18%, and 24.91% for GPT-3.5-turbo, GPT-
4o-mini, DeepSeek-Coder, and Codestral, respectively,
compared to 14.77%, 22.60%, 25.44%, and 22.78% for
the latter.

Table 5: RQ5: Knowledge retrieval from KG is better than
from plain text. FR refers to Fix Rate, TU refers to Token
Usage (input token usage + output token usage), and MS refers
to Money Spent for LLM receiving the prompt and generating
the response.

Model Knowledge Retrieval FR TU MS

GPT-3.5-turbo Plain Text 14.77% 1432.42 $0.00082
Knowledge Graph 18.51% 1262.14 $0.00073

GPT-4o-mini Plain Text 22.60% 1827.59 $0.00046
Knowledge Graph 25.80% 1584.74 $0.00043

DeepSeek-Coder Plain Text 25.44% 1723.77 $0.00030
Knowledge Graph 29.18% 1453.96 $0.00025

Codestral Plain Text 22.78% 1636.46 $0.00209
Knowledge Graph 24.91% 1407.15 $0.00185

F. RQ6: How does the richness of API knowledge affect
DSrepair?

To address RQ6, we assess how varying the richness
of API knowledge impacts the performance of DSrepair.
In our DSrepair setup, we use only the full expressions
of the invoked API to enrich the prompts. Our queries
also yield additional information about correct API us-
age, including explanations of functions, and details about
parameters and returns. To explore the potential bene-
fits of this enriched API knowledge, we design experi-
ments with different richness levels of API information:
DSrepair+explanation, DSrepair+parameter&return, and DSre-
pair+explanation+parameter&return. DSrepair+explanation in-
corporates explanations of the invoked API into the
API knowledge. DSrepair+parameter&return adds informa-
tion about the function’s parameters and returns. DSre-
pair+explanation+parameter&return combines both types of
information into the API knowledge.

Table 6 presents the performance results of these different
levels of API knowledge richness. The results are evaluated
in terms of effectiveness, as measured by the Fix Rate (FR),
and cost, as quantified by Token Usage (TU) and Money
Spent (MS). The data shows that DSrepair achieves the highest
Fix Rate across all richness levels, with 18.51% on GPT-3.5-
turbo, 25.80% on GPT-4o-mini, 29.18% on DeepSeek-Coder,
and 24.91% on Codestral. This suggests that the additional
information may complicate the prompt without necessarily
improving the effectiveness of the repair.

In terms of cost, DSrepair generally exhibits lower to-
ken usage and monetary cost compared to its enriched
counterparts. For example, on GPT-3.5-turbo, DSrepair uses
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1262.14 tokens and incurs a cost of $0.00073, whereas DSre-
pair+explanation+parameter&return uses 1584.49 tokens and
costs $0.00089. This pattern holds across the other models
as well, indicating that increasing the complexity of the
API knowledge may lead to higher money costs without a
proportional gain in repair effectiveness.

Answer to RQ6: Using full expressions of invoked
API from the retrieval results in DSrepair performs
the best in fixing bugs.

G. RQ7: How does the non-determinism of LLM affect our
experiment results?

To investigate RQ7, we explore the effect of non-
determinism in LLMs on our experimental results. As outlined
in Section III, we conduct each experiment ten times to
account for variability in LLM responses. From these itera-
tions, we select the median performance result as our final
data point for analysis. To further understand how LLM non-
determinism might influence our results, we calculate the mean
and standard deviation of the results across the ten trials.

Table 7 shows the mean FR (Fix Rate) and the standard
deviation of code repair results driven by different prompt
engineering strategies. We observe that the standard deviations
of DSrepair are not big, which indicates the stability of our
experiment results. Additionally, with the standard deviation,
DSrepair still outperforms other prompt engineering strategies
in its mean FR, with 101.80 ± 6.71, 142.90 ± 6.44, 163.67 ±
1.25, 137.80 ± 4.60 for using GPT-3.5-turbo, GPT-4o-mini,
DeepSeek-Coder, and Codestral as LLM respectively.

Answer to RQ7: Despite the randomness of LLMs,
DSrepair consistently outperforms other strategies with
greater stability across multiple trials. It achieves mean
Fix Rates of 101.80 ± 6.71, 142.90 ± 6.44, 163.67 ±
1.25, 137.80 ± 4.60 across GPT-3.5-turbo, GPT-4o-
mini, DeepSeek-Coder, and Codestral respectively.

V. DISCUSSION

In this section, we discuss the threats to validity and the
limitations of our research.

A. Threats to Validity

The threats to internal validity mainly lie in the implemen-
tation of our prompt design. To reduce this threat, we design
DSrepair with the idea of ‘Structuring Prompts’, adapted from
a handy template for structuring prompts, called CO-STAR
framework [54]. Considering key aspects that influence the
effectiveness and relevance of an LLM’s response, DSrepair
can lead LLMs to generate more optimal responses for code
purposes. In addition, we design research questions, such as
RQ4 and RQ6, to study the influence of the different prompts
on our final performance.

The threats to external validity mainly lie in the datasets,
and LLMs used in our study. To reduce the threat regard-
ing datasets, we carefully choose to use DS-1000 as our
experiment dataset, which is the state-of-the-art benchmark
tailored to address data leakage concerns with realistic and
diverse data science problems , with testing methods checking
both execution semantics and surface-form constraints [5]. To
reduce the threat regarding LLMs, we use four widely studied
LLMs to mitigate the potential bias that certain LLMs can
bring to the experiment results. In addition, to mitigate the
inherent randomness of LLMs, we experiment ten times for
each prompt engineering strategy and choose one with the
median overall performance as our final result, which could
further mitigate the non-determinism of LLMs. Moreover, we
exclusively design RQ7 to study whether the non-determinism
of LLMs will affect our experiment findings.

B. Limitation

The effectiveness of DSrepair depends largely on the quality
and completeness of the knowledge it provides. Our approach
demonstrates capability in addressing runtime errors by elim-
inating the initial error. However, this repair process can
sometimes introduce or trigger new errors. This phenomenon
is particularly evident when the repaired code successfully
executes but subsequently results in assertion errors. The
reliance on high-quality test cases in the problem description
is crucial; in their absence, DSrepair may guide large language
models (LLMs) to generate code that closely mirrors the
incorrect code. This occurs because the LLMs are provided
with API knowledge that can inadvertently reinforce the use
of incorrect or irrelevant APIs present in the original code.
Despite this, there are instances where, upon receiving API
knowledge, the LLMs deviate from the incorrect APIs, opting
instead for alternative solutions, such as using different APIs
or defining new functions.

Maintaining the DS-KG presents significant challenges. Our
DS-KG only reflects the correct knowledge of APIs based
on a specific version. The rapid pace at which online API
documentation is updated complicates the task of ensuring the
DS-KG remains up-to-date. Consequently, keeping the DS-
KG up-to-date demands substantial effort and resources. This
maintenance burden is a critical consideration, as outdated
or incomplete knowledge can adversely affect the accuracy
and reliability of the repairs generated by DSrepair. With the
assistance of API document’s release notes, we could manage
the updating of DS-KG by leveraging library development
logs to automate the process. These logs often document the
changes and updates made to API libraries, allowing us to
efficiently identify and integrate the necessary modifications
into the knowledge graph.

Another notable limitation of DSrepair is the time cost
associated with knowledge retrieval. When compared to plain
text searching, retrieval using the DS-KG incurs a significant
time overhead, averaging 51.49% more time (approximately
0.06 seconds) per task. While this increase in retrieval time
may seem marginal, it can accumulate and impact the over-
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Table 6: RQ6: Influence of API knowledge richness on DSrepair. FR refers to Fix Rate, TU refers to Token Usage (input token
usage + output token usage), and MS refers to Money Spent for LLM receiving the prompt and generating the response.

Prompt Engineering Strategy GPT-3.5-turbo GPT-4o-mini DeepSeek-Coder Codestral

FR TU MS FR TU MS FR TU MS FR TU MS

DSrepair+explanation 15.84% 1279.50 $0.00074 22.78% 1597.57 $0.00043 27.22% 1503.78 $0.00026 24.38% 1410.30 $0.00187
DSrepair+parameter&return 14.95% 1573.98 $0.00089 22.60% 1885.12 $0.00047 26.33% 1803.51 $0.00030 24.02% 1698.39 $0.00215
DSrepair+explanation+parameter&return 15.30% 1584.49 $0.00089 23.49% 1901.94 $0.00047 26.87% 1816.90 $0.00030 24.02% 1712.37 $0.00217

DSrepair 18.51% 1262.14 $0.00073 25.80% 1584.74 $0.00043 29.18% 1453.96 $0.00025 24.91% 1407.15 $0.00185

Table 7: RQ7: The mean and standard deviation of the ANF (Absolute Number of Fix). The table shows the mean results of
the repeated experiments, the values are formatted in mean ANF ± standard deviation. Our experimental results have a small
standard deviation. Even within the standard deviation, our experimental conclusions stated in RQ1 still hold.

Prompt Engineering Strategy GPT-3.5-turbo GPT-4o-mini DeepSeek-Coder Codestral

Code-Search 26.40 ± 2.46 102.5 ± 2.29 75.33 ± 3.09 104.3 ± 2.83
Chat-Repair 60.50 ± 3.75 122.0 ± 2.79 128.00 ± 0.82 104.8 ± 2.18
Self-Debugging-S 51.10 ± 4.44 117.4 ± 2.69 108.00 ± 2.16 81.70 ± 6.39
Self-Debugging-E 68.60 ± 6.18 124.2 ± 6.16 102.67 ± 3.77 94.60 ± 5.70
Self-Repair 71.20 ± 4.58 125.1 ± 3.59 134.33 ± 3.09 91.50 ± 8.42

DSrepair 101.80 ± 6.71 142.90 ± 6.44 163.67 ± 1.25 137.80 ± 4.60

all efficiency of the repair process, particularly in scenarios
requiring rapid iteration and testing.

VI. RELATED WORK

A. Code Repair

The goal of automated program repair is to automatically
identify and fix bugs or defects in the software. Leveraging
LLMs, such as BERT [55], CodeBERT [56], Codex [57]–
[59], and GPT-series [9], [60]–[62], for code repair can achieve
promising performance in generating patches for various kinds
of bugs and defects. These models are adept at grasping the
core meaning and relationships within code, resulting in the
generation of precise and functional fixes without the need for
compilation. Using LLMs for fixing code speeds up the iden-
tification and resolution of bugs, freeing software developers
to tackle more intricate issues. This contributes to improved
software reliability and upkeep. ChatGPT, in particular, stands
out among LLMs because of its built-in interactive nature,
which fosters an ongoing loop of feedback, producing patches
that are more polished and appropriate to the context [9],
[61]. The conversational dynamics of ChatGPT, coupled with
rigorous comparisons across diverse baselines, underscore its
superior adaptability and efficiency.

B. Prompt Engineering

Prompt designing is an increasingly important skill set
needed to leverage effectively with LLMs [63], such as Chat-
GPT. Similar to software design [64], the design of prompt
aims at offering reusable solutions to specific problems, by
providing a codified approach to customizing the output and
interactions of LLMs. Abukhalaf et al. [65] conduct an em-
pirical study on Object Constraint Language based constraint
generation, by comparing the Codex generated constraints
and humane-written constraints. Xia et al. [61] specifically
examined prompts for automatic code repair. More specifically,
White et al. [66] focus on combatting mistakes and improving
generated code quality by designing prompt patterns. Borji

et al. [67] examine the quality of generated answers and
code from LLMs, and conclude the existing failures from the
experiment. Our research work draws inspiration from these
explorations and prompts that could be used to generate code
candidates with better quality and fewer errors.

C. Retrieval-Augmented Generation

RAG aims to address the limitations of generative models,
including issues related to outdated knowledge, a deficiency in
long-tail knowledge [68], and the potential for private training
data leakage [69]. Early research in code generation concen-
trated on code-to-code retrieval using dual encoder models,
with the retrieved outputs subsequently inputted into autore-
gressive language models [20]. RepoCoder [22] enhances
retrieval processes by employing iterative incremental gener-
ations [70]. KNM [21] leverages in-domain code databases
and applies Bayesian inference to finalize the generated code.
RAG also can be used to build prompts for transformer-
based generative models with retrieved information, including
similar examples [15], [16], relevant API details [6], [7],
documentations [17], and imports [18].

VII. CONCLUSION

We propose DSrepair, a novel knowledge-enhanced ap-
proach for data science code repair. We perform experiments
with four LLMs and five baseline methods in data science code
repair and find that DSrepair significantly outperforms all the
baseline methods in repairing data science code. By integrating
API knowledge retrieval and bug information enrichment, we
can guarantee better performance in code repair, and gain
people’s trust in using LLMs for coding. In future work,
we plan to explore a multi-agent framework with interactive
feedback to enhance DSrepair’s performance while focusing
on optimizing feedback steps and resource use to ensure
scalability, cost-efficiency, and robust data science code repair.
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