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Abstract. Knowledge Graph Embeddings Models project entities and
relations from Knowledge Graphs into a vector space. Despite their
widespread application, concerns persist about the ability of these models
to capture entity similarities effectively. To address this, we introduce In-
terpretE, a novel neuro-symbolic approach to derive interpretable vector
spaces with human-understandable dimensions in terms of the features
of the underlying entities. We demonstrate InterpretE ’s efficacy in en-
capsulating desired semantic features, presenting evaluations both in the
vector space as well as in terms of semantic similarity measurements.

Keywords: knowledge graph embeddings · semantic similarity · inter-
pretable vectors.

1 Introduction

Since early 2010s, significant progress has been made in the development of
Knowledge Graph Embeddings Models (KGEMs). These models aim to project
the entities and relations of Knowledge Graphs (KGs) in a high-dimensional
vector space. This approach offers a sub-symbolic means of representing the
entities and their connections within the original KG [3]. KGE models have
found applications across various tasks, including KG completion, rule-based
reasoning, and recommendation systems [26, 7, 12]. These models are typically
trained and evaluated with a focus on the task of link prediction where a score
for plausibility of KG triples is optimized.

However, there is a prevalent belief that KGEMs can effectively capture sim-
ilarities between underlying entities where similar entities are clustered in the
vector space. As such, KGEMs have been used for tasks such as entity or relation
similarity and conceptual clustering [17, 10, 22]. This notion was first challenged
by Jain et al. [15], where the authors demonstrated that entities belonging to the
same type (or class) do not effectively cluster together in the vector space be-
yond the most basic entity types. Subsequently, other recent studies have delved
into this further, arriving at similar conclusions [13, 1].

A fundamental challenge for KGEMs in terms of capturing entity similarity
stems from the complex nature of the underlying data. Entities within the KG
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possess diverse features, that dictate their eventual vector representation. This
makes it exceedingly challenging to discern the precise factors driving the distri-
butions of vectors in the embedding space. The lack of mapping between entity
features and vector dimensions leads to a deficiency in semantic interpretability,
with no way to comprehend why certain vectors are similar, nor to identify which
entity features influence the representations.

In this work, we aim to bring back the semantic interpretability for the em-
bedding vectors by explicitly connecting them to underlying features of the en-
tities. Our proposed neuro-symbolic approach InterpretE is capable of deriving
new vector spaces that can be understood in terms of the human-understandable
features of the entities in the KG, hence enabling informed decisions in down-
stream semantic tasks (e.g. recommendation systems and conceptual clustering),
debugging and comparing the models and understanding hidden biases [21]. We
design different experiments to demonstrate that the vector spaces obtained from
InterpretE can encapsulate desired semantic features and the approach is highly
flexible in terms of the number and types of the entity features. The evaluation
of the approach is presented in terms of the quality of the resulting clusters
in the derived vector space, as well in terms of the semantic similarity of the
corresponding entities. The code is publicly available 3.

2 Related work

Semantics in Knowledge Graph Embeddings. Recent critiques have questioned
the widely-held assumption that KGEMs produce semantically meaningful rep-
resentations of underlying entities [13]. Additionally, Ilievski et al. [14] observed
consistent under-performance of KGEMs compared to simpler heuristics in tasks
reliant on similarity, particularly within word embeddings. The authors argue
that many properties that heavily relied upon by KGEMs are not conducive
to determining similarity, thereby introducing noise that ultimately undermines
performance.

Interpretable Dimensions. Several approaches have emerged to construct in-
terpretable spaces [8, 5, 4, 21] using multiple data sources, predominantly text-
based. The term ‘interpretable space’ encompasses simple and human-understandable
spaces. Conceptual spaces, introduced by Peter Gardenfors [11], represent con-
cepts through cognitively meaningful features known as quality dimensions. These
dimensions are typically learned from human judgments and serve as an interme-
diary representation layer between neural and symbolic representations. While
promising for the advancement of explainable AI, this approach has not been
extended to more complex datasets such as KGs and their representations. Our
proposed approach is a first step towards identifying similar interpretable dimen-
sions for KGEMs and deriving vector spaces that are human-understandable in
terms of the underlying features of the KG entities.

3 https://github.com/toniodo/InterpretE

https://github.com/toniodo/InterpretE
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Fig. 1. Overview of InterpretE
Fig. 2. Example 2D visualization of In-
terpretE vectors (city entities, location
as features)

3 InterpretE

Figure 1 provides a simplified view of the proposed approach. Essentially, n-
dimensional entity vectors from a given pre-trained KGEM serve as the input,
along with a set of d features for these entities that are desired to be repre-
sented in the vector space (these can be task driven, e.g. separating players from
politicians). An SVM model is trained on the vectors and dictated by the fea-
tures to produce d -dimensional InterpretE vectors where the dimensions of the
InterpretE vector space correspond to the entity features. Furthermore, similar
entities in terms of the specified features are clustered together. Further details
of the approach are provided below.

Feature Selection. The InterpretE approach is centered around the represen-
tation of the desired features of the entities in the vector space. As such, we
designed several experiments with different features to test the approach4. The
entities of the KG are first organized into their respective types, e.g. persons, or-
ganizations, locations etc. For each entity type, the most representative relations
are considered and their values organized into categories as per their distribution
in the KG triples, these categories serve as the entity features that dictate the
dimensions in the InterpretE vector spaces. (See Figure 3 and 4 for an overview
of the dataset analysis.) We consider the features at different levels of granu-
larity, for instance, for person entities, one of the most complete relations was
found to be ‘wasBornIn’, in this case, the locations were mapped from specific
cities to their corresponding countries for one experiment, as well as abstracted
to continents in another experiment to evaluate the approach for different lev-
els of abstractions. An example feature would be bornIn France. This process
is highly adaptable and primarily guided by the availability of sufficient data
points for the features, hence tailored to the data in the KG. Once the features

4 Note that the attributes of the KG entities could not be considered as features since
most KGEMs are not trained on them, hence such features cannot be derived from
the original vectors.
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are established, entities are labeled with binary values indicating the presence
or absence of each feature. This labeled data is then utilized for SVM training
in the next step.

Derivation of Interpretable Vectors Having determined the features as described
above for different types of entities, SVM classifiers are trained on each feature,
following a similar methodology as employed by Derrac et al. [8]. To streamline
the SVM training, we automated the process and defined a set of possible pa-
rameters for the SVM, grid search and cross validation was performed in order to
select the best estimator (with the Scikit-learn [20] library which uses LibSVM
[6]). This methodology helps prevent overfitting and ensures a more generalized
estimated hyperplane. To address class imbalance in the KG data, weights were
assigned to entities based on their class distribution. The performance is evalu-
ated using a testing set comprising 20% of all entities. At the end of this process,
new vectors were derived for each entity where each dimension corresponds to a
specific feature and the sign indicates the associated feature.

4 Experiments

Datasets and Embeddings. To derive and categorize features for different enti-
ties in the KG, their type information was essential. As such, we leveraged KG
datasets with associated ontologies, focusing on subsets of Yago (Yago3-10 [18])
and Freebase (FB15k-237) [23] KGs. Additionally, we reused Wordnet-based en-
tity type mappings from previous work [15].

As done in previous works [15, 13], several popular and benchmark KGEMs
were considered for the experiments to analyse the scalability of the Inter-
pretE approach across vector spaces generated with different methods, including
ConvE [9], TransE [2], DistMult [27], Rescal [19] and Complex [25]5.

Evaluation of InterpretE Vector Space. The derived InterpretE vector spaces
are presumed to cluster the vectors for the entities as per the selected features.
An example for the 2-d visualization of these clusters is shown in Figure 2,
where the experiment centered around city entities and their locations as features
(abstracted to continents). In order to evaluate these clusters, the Cohen’s kappa
coefficient (κ score) was calculated for the test set (following [8]). This metric
measures the agreement between two dependent categorical samples. The value
ranges from -1 to 1, with a value closer to 1 indicating stronger agreement
between the trained SVM and the ground truth on the testing set. The values of
the mean κ score for the different experiments on Yago3-10 dataset are shown
in table 1. (The results for FB15k-237 are available in the appendix(table 2)).
Values close to 1 for this metric for most experiments indicates the promise of
the approach.

5 The pretrained embeddings were obtained from https://github.com/nitishajain/

KGESemanticAnalysis

https://github.com/nitishajain/KGESemanticAnalysis
https://github.com/nitishajain/KGESemanticAnalysis
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Evaluation of Semantic Similarity. InterpretE vectors are dictated by the se-
lected features for the entities that they represent, as such we evaluated the
semantic similarity of the derived vectors (in terms of the features) to measure
this desirable characteristic. We propose a simple metric simtopk to measure the
similarity of entities’ neighbors. For each entity, we analyze its neighborhood to
estimate the similarity based on the corresponding feature used in the SVM
experiment. The parameter k represents the number of neighbors considered.
The score assigned to the original entity is calculated as the mean value of the
similarities computed with these neighboring entities. This process is repeated
for all entities, and the mean value of these scores is computed to serve as the
final metric. The proposed simtopk metric can be formulated as:

simtopk =
1

n

n∑
i=1

1

k

∑
j∈Ni(k)

f(ni, nj)

 (1)

where: n : the number of total entities; k : the number of considered neigh-
bours; Ni(k) : the k closest neighbours of the i-th entity, determined using a
euclidean distance; f(·, ·) : returns 1 if the two entities are similar in terms of
features, 0 otherwise

The values of this metric for k=10 for the original and the derived InterpretE
embeddings for the different experiments are shown in table 1 for Yago3-10 (and
table 2 for FB15k-237 in appendix). The scores are better for InterpretE vectors
as compared to the original pre-trained vectors across the board, indicating that
similar entities were being represented by vectors that are closer in the new
vector space, as desired.

4.1 Discussion

The results from the designed experiments for each dataset demonstrate the po-
tential of the proposed approach. However, there are several considerations for
the experiment design that depend heavily on the data distributions and charac-
teristics of the underlying KG data. For example, there is often class imbalance
in entities concerning selected features (e.g., hasGender having more male rep-
resentatives than female). These factors can impact the performance of the SVM
classifier. Class-based weights have been applied to the data points to address
this issue, but it remains a design challenge. Another challenge is the abstrac-
tion of features, especially if the underlying data is noisy and non-canonicalized
(e.g., different labels for the same value such as ‘UK’ and ‘United Kingdom’).
Resolving these issues is crucial for creating useful feature categories. Despite
these challenges, InterpretE represents a significant step towards deriving inter-
pretable vector spaces from KGEM vectors. It is flexible and applicable to any
KGEM. We aim to further develop this approach to streamline the design and
engineering process, enhancing its scalability across various datasets.
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Entity type and chosen features ConvE TransE DistMult Rescal Complex

person hasGender - wasBornIn

(Europe)

κ score .96 .93 .95 .96 .94
original .456 .496 .492 .507 .504

InterpretE .54 .529 .538 .543 .539

person wasBornIn

(Europe - Asia - North America)

κ score .92 .84 .90 .94 .90
original .687 .8 .814 .871 .831

InterpretE .987 .959 .983 .987 .979

person playsFor

(UK - Germany - Italy - US)

κ score .80 .80 .81 .80 .81
original .789 .832 .838 .828 .85

InterpretE .917 .716 .913 .9 .942

person worksAt (university -

educational institution - organization)

κ score .31 .13 .32 .31 .30
original .467 .413 .465 .461 .465

InterpretE .868 .868 .853 .86 .807

person type (player - artist - politician

- scientist - officeholder - writer)

κ score .77 .75 .78 .78 .74
original .745 .772 .805 .794 .662

InterpretE .953 .945 .958 .944 .938

city isLocatedIn (Europe - Asia -

(North - South) America)

κ score .94 .96 .96 .98 .98
original .899 .959 .949 .966 .972

InterpretE .989 .993 .991 .996 .996

organizations location (US - UK -

Canada - Japan - France - Australia)

κ score .52 .53 .51 .58 .54
original .622 .694 .658 .703 .703

InterpretE .904 .786 .912 .899 .897

scientist hasWonPrize
κ score .96 .84 .97 .85 .98
original .539 .51 .575 .538 .578

InterpretE .958 .934 .966 .926 .972

Table 1. simtop10 scores on original and InterpretE vectors and κ scores for the
experiments with Yago3-10

5 Conclusion and Future Work

This paper attempts to address the oft overlooked issue of lack of semantic in-
terpretability in latent spaces generated by popular KG embedding models. The
proposed InterpretE approach is shown to be capable of deriving interpretable
spaces from existing KGEM vectors with human-understable dimensions that
are based on the features in the underlying KG. Through the design and evalua-
tion of different experiments, we have showcased the promise of the approach for
encapsulating entity features in the vectors for different feature abstraction lev-
els, customizable as per the dataset. By aiming to bridge the gap between entity
representations and human-understandable features, InterpretE paves the way
for enhanced understanding and utilization of KGEMs in various applications.
Future research can further explore the implications of this approach and extend
its applicability to broader contexts within the field of knowledge representation
and reasoning.
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A KG statistics

Fig. 3. Top 10 most represented rela-
tions Yago3-10

Fig. 4. Top 10 most represented rela-
tions FB15K-237

Fig. 5. Top 10 most represented types
Yago3-10 Fig. 6. Top 10 most represented types

FB15K-237

https://arxiv.org/abs/1412.6575
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B FB15K-237 Results

Entity type and chosen features ConvE TransE DistMult Rescal Complex

gender - nationality

(USA - England - UK - India - Canada)

κ score .84 .73 .83 .88 .84
original .587 .524 .575 .563 .563

InterpretE .952 .918 .936 .956 .932

organizations locations

(USA - UK - Japan - Canada - Germany)

κ score .78 .70 .75 .58 .79
original .766 .738 .758 .731 .768

InterpretE .951 .947 .958 .959 .96

film release region

(USA - Sweden - France - Spain - Finland)

κ score .71 .69 .71 .66 .71
original .705 .66 .661 .621 .661

InterpretE .876 .866 .903 .907 .892

film genre

(drama - comedy - romance - thriller - action)

κ score .68 .65 .71 .72 .70
original .212 .217 .215 .217 .213

InterpretE .732 .719 .805 .78 .753

Table 2. simtop10 scores on original and InterpretE vectors and κ scores for the
experiments with FB15K-237
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C Semantic evaluation with LLMs

For the similarity evaluation task, we explored using a large language model
(LLM) in a limited experiment. We attempted this approach with few-shot
prompting using Llama3-70B [24]. Additionally, we experimented with a RAG
pipeline using the entire initial knowledge graph with Mistral7B [16] and Lla-
maIndex. However, the results were not consistently convincing, and the model
sometimes contradicted itself.

In our prompt to the LLM, we provided two examples: one positive and one
negative, randomly chosen from all possible entities. We also specified the type of
similarity we were evaluating, as it depended on the selected feature for a given
experiment. This method allows us to assess our approach by examining how
similar the neighborhood of a given entity is to the entity itself. This approach
needs to be applied to all entities to obtain a global evaluation metric, which we
plan to explore in future work.

Prompt. <s>[INST] You are a good
knowledge base. Tell if these two entities
are similar in terms of gender and conti-
nent of birth: Albert Einstein and Winston
Churchill? [/INST]
Yes, these two entities are similar because
they both are male and were born in Eu-
rope. </s>
<s>[INST] You are a good knowledge base.
Tell if these two entities are similar of gen-
der and continent of birth: Marie Curie and
Louis Pasteur? [/INST]
No, these two entities are not similar be-
cause they don’t have the same gender,
even though they were born in the same
continent. </s>
<s>[INST] You are a good knowledge base.
Tell if these two entities are similar of gen-
der and continent of birth: Pierre Curie and
John F. Kennedy? [/INST]

No, these two entities are not similar be-
cause they were born in different conti-
nents, even though they have the same gen-
der.

Prompt. <s>[INST] You are a good
knowledge base. Tell if these two en-
tities are similar in terms of countries
of country of location between US, UK,
Canada, Japan, France, Australia and oth-
ers: ENSTA Paris and Agence France-
Presse? [/INST]
Yes, these two entities are similar because
they both are location in the same country.
</s>
<s>[INST] You are a good knowledge
base. Tell if these two entities are simi-
lar in terms of countries of country of lo-
cation between US, UK, Canada, Japan,
France, Australia and others: International
Civil Aviation Organization and United
Nations? [/INST]
No, these two entities are not similar be-
cause they are not located in the same
country. </s>
<s>[INST] You are a good knowledge base.
Tell if these two entities are similar in
terms of countries of country of location
between US, UK, Canada, Japan, France,
Australia and others: King’s College Lon-
don and University of Cambridge? [/INST]

Yes, these two entities are similar because
they both are located in the same country,
which is the UK.

Fig. 7. Partial example of few-shot prompts with Llama 3 70B using HuggingChat
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